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Summary

» A type of Rao-Blackwellization provably leads
to variance reduction for deterministic sweep
Gibbs sampling, for any number of components
K> 2

» Further gains, theoretically and empirically,
using a control variate approach

» For 2-component data augmentation Gibbs
sampling, control variates are theoretically and
empirically superior to the common
Rao-Blackwellization approach of conditioning
on the auxiliary random variable

Setup

Integral approximations:

» 7 is a probability measure on (X, 2°)
» want to compute expectations wrt 7
» but not tractable: use MCMC
Default approach: to estimate

= [ (detx)

use Markov chain Xy, X1, X5, ... and empirical
average

M—-1
Iailﬂnp =M Z g(Xt)
t=0

Asymptotics
Under mild conditions, we have
CLT: M2 5205 g(X) — 1} 5 N(0, )

Asymptotic
variance

Goal: variance reduction (reduce X in Markov

chain CLT)

Deterministic sweep samplers

Cycle in fixed order through K kernels
[, k=1,.. K

Example with K = 3

X, |_|1(Xo;')> X, I_|2(X1,')> X
X4 7 e

I_IZ(X47')\
Typical use case
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» easier to find Markov kernel to update a
component of a vector state x € X than to
update the entire state at once

» commonly, Gibbs sampling or
Metropolis-within-Gibbs

Variance reduction via
conditioning/Rao-Blackwellization

M—1
ar = M~ Z Meg(X:)
t=0

[1;: transition kernel at step t

Mg (X,) = / (X, dx)g(x)

Variance reduction via control variates

Use
M—1

M~ Z{g(Xt) — W}

t=0

where W, are mean 0 R.V.'s

We consider control variates with form
W, = C {f(X:) — Mef(X)},

» C € RP*Y is a weight matrix
»f : X — RP is an arbitrary function

Control variate estimator:

M1
i = fy’ —M7C! Z{f(Xt) — M (Xe) }
(=0

control variate

» from 7 stationarity of [,
EALf(X)—TLf(X)} =0, k=1 .,K

so f(x) — lN,f(x) can be used as a control
variate

Control variate asymptotic variance

A EM d em
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where

Se=Y""c'uc-v'c-cCc'v

U=K1Y / r(dx) ([T — (MeF)(MFT))

V=K1Y / m(d) {F&T 0 — (Mef) (Mioge) ™)

Optimal weight: ¥ minimized at C = U1V

Simplifications for Gibbs sampling:

For deterministic sweep Gibbs sampling, V
simplifies to

V= / r(d)F(x) (g(x) — )"

» for Gibbs sampling, the optimal weight depends
only on lag-0 and lag-1 autocovariances

» these are easy to estimate based on the MCMC run

Deterministic sweep Gibbs sampling
result (K > 2)

Asymptotic variance ordering
Ye< T L yem

where

» 2~ asymptotic variance of the control variate
estimator /i, with optimal weight C

» ¥ "B asymptotic variance of the conditioning
estimator /P
» 2 TP asymptotic variance of the empirical

average [1°"P
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Data augmentation Gibbs sampling

Setup:
» K =2
»want X ~
»use Z = (X,Y) ~ 7 where 7 is a joint
distribution with correct marginals:
T{(X,Y) e Ax Q} =n(X € A)
» X Is variable of interest: function of interest
g(X,Y) = g(X) only depends on X
» Y is auxiliary variable
»Z = (X, Y) is augmented/joint state
» Gibbs kernels:
Mih(z) = Ex{h(Z)|Y '}
[Mah(z) = Ex{h(Z)|X}

Another Rao-Blackwellization estimator:

M—1
iy =M™ Z :8(Z:)
r—0

~ DA ~RB
> g 7 fipg
» since ﬁ,[\)/,A only averages conditional expectations wrt
auxiliary variable Y

Asymptotic variance comparison:
Yo < IA TR < yeme

» Control variates outperform conditioning in
this setting

Simulation study

MSE vs. Monte Carlo
sample size

MSE vs. sampling time
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Figure: Mean squared error for estimating the posterior
mean of (3, versus number of Monte Carlo samples (left)
and computing time (right).

Bayesian probit regression example
» Glass dataset from the UCI dataset repository

» n = 214 observations and p = 10 features
(including an intercept column)

» predict Type = 1 vs. Type # 1 (originally 7

types)
» Normal prior 3 ~ N(0, T_llep)

» Observations Y| nd Bernoulli(®(x;' 3))

(probit link)
Sampling scheme:
» DA Gibbs sampler of Albert and Chib [1993]

» Estimate posterior mean of (3
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