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Summary

▶A type of Rao-Blackwellization provably leads
to variance reduction for deterministic sweep
Gibbs sampling, for any number of components
K ≥ 2

▶Further gains, theoretically and empirically,
using a control variate approach

▶For 2-component data augmentation Gibbs
sampling, control variates are theoretically and
empirically superior to the common
Rao-Blackwellization approach of conditioning
on the auxiliary random variable

Setup

Integral approximations:
▶π is a probability measure on (X ,X )

▶want to compute expectations wrt π

▶ but not tractable: use MCMC

Default approach: to estimate

µ =

∫
π(dx)g(x),

use Markov chain X0,X1,X2, ... and empirical
average

µ̂emp
M = M−1

M−1∑
t=0

g(Xt)

Asymptotics

Under mild conditions, we have

CLT: M−1/2
∑M−1

t=0 {g(Xt)− µ} d→ N(0, Σ
↑

Asymptotic
variance

)

Goal: variance reduction (reduce Σ in Markov
chain CLT)

Deterministic sweep samplers

Cycle in fixed order through K kernels

Πk, k = 1, ...,K

Example with K = 3:

X0
Π1(X0,·)−−−−→ X1

Π2(X1,·)−−−−→ X2
Π3(X2,·)−−−−→ X3

Π1(X3,·)−−−−→

X4
Π2(X4,·)−−−−→ ...

Typical use case
▶ easier to find Markov kernel to update a
component of a vector state x ∈ X than to
update the entire state at once

▶ commonly, Gibbs sampling or
Metropolis-within-Gibbs

Variance reduction via
conditioning/Rao-Blackwellization

µ̂RB
M = M−1

M−1∑
t=0

Πtg(Xt)

Πt: transition kernel at step t

Πtg(Xt) =

∫
Πt(Xt, dx)g(x)

Variance reduction via control variates

Use

M−1
M−1∑
t=0

{g(Xt)−Wt}

where Wt are mean 0 R.V.’s

We consider control variates with form

Wt = C⊤{f (Xt)− Πtf (Xt)},
▶C ∈ Rp×d is a weight matrix

▶ f : X → Rp is an arbitrary function

Control variate estimator:

µ̂CV
M = µ̂emp

M −M−1C⊤
M−1∑
t=0

{f (Xt)− Πtf (Xt)}︸ ︷︷ ︸
control variate

▶ from π stationarity of Πk,

Eπ{f (X )− Πkf (X )} = 0, k = 1, ...,K

so f (x)− Πkf (x) can be used as a control
variate

Control variate asymptotic variance

(empirical) M1/2(µ̂emp
M − µ)

d→ N(0,Σemp)

(control variate) M1/2(µ̂CV
M − µ)

d→ N(0,ΣC)

where

ΣC = Σemp + C⊤UC − V⊤C − C⊤V

U = K−1
K∑
k=1

∫
π(dx){ff T − (Πkf )(Πkf

T)}

V = K−1
K∑
k=1

∫
π(dx){f ĝT

σ(k) − (Πkf )(Πkĝσ(k))
T}

Optimal weight: ΣC minimized at C̃ = U−1V

Simplifications for Gibbs sampling:

For deterministic sweep Gibbs sampling, V
simplifies to

V =

∫
π(dx)f (x){g(x)− µ}⊤

▶ for Gibbs sampling, the optimal weight depends
only on lag-0 and lag-1 autocovariances
▶ these are easy to estimate based on the MCMC run

Deterministic sweep Gibbs sampling
result (K ≥ 2)

Asymptotic variance ordering

ΣC̃ ≤ ΣRB ≤ Σemp

where

▶ΣC̃ asymptotic variance of the control variate
estimator µ̂CV

M with optimal weight C̃

▶ΣRB asymptotic variance of the conditioning
estimator µ̂RB

M

▶Σemp asymptotic variance of the empirical
average µ̂emp

Data augmentation Gibbs sampling

Setup:

▶K = 2

▶want X ∼ π

▶ use Z = (X ,Y ) ∼ π̃ where π̃ is a joint
distribution with correct marginals:

π̃{(X ,Y ) ∈ A× Ω} = π(X ∈ A)

▶X is variable of interest; function of interest
g̃(X ,Y ) = g(X ) only depends on X

▶Y is auxiliary variable

▶Z = (X ,Y ) is augmented/joint state

▶Gibbs kernels:

Π1h(z) = Eπ̃{h(Z )|Y }
Π2h(z) = Eπ̃{h(Z )|X}

Another Rao-Blackwellization estimator:

µ̂DA
M = M−1

M−1∑
t=0

Π1g̃(Zt)

▶ µ̂DA
M ̸= µ̂RB

M

▶ since µ̂DA
M only averages conditional expectations wrt

auxiliary variable Y

Asymptotic variance comparison:

ΣC̃ ≤ ΣDA ≤ ΣRB ≤ Σemp

▶Control variates outperform conditioning in
this setting

Simulation study
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Figure: Mean squared error for estimating the posterior
mean of β, versus number of Monte Carlo samples (left)
and computing time (right).

Bayesian probit regression example
▶Glass dataset from the UCI dataset repository

▶ n = 214 observations and p = 10 features
(including an intercept column)

▶ predict Type = 1 vs. Type ̸= 1 (originally 7
types)

▶Normal prior β ∼ N(0, τ−1Ip×p)

▶Observations Yi|β
ind∼ Bernoulli(Φ(x⊤i β))

(probit link)

Sampling scheme:
▶DA Gibbs sampler of Albert and Chib [1993]

▶Estimate posterior mean of β
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