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Introduction: MCMC for Bayesian statistics

» probability measure 7 on (X, 2"), eg Bayesian posterior distribution
» want u = [ g(z) w(dz)

» construct Markov chain Xj, X1, ... with stationary distribution

» estimate p by

M—

fing = M1 9(Xy)
t=

—_



Application: autocovariance sequence estimation

» The autocovariance sequence
v = {7(k)}kez, defined as

v(k) = Cov(g(Xo), 9(Xk)), k € Z,

characterizes second order properties

of a stationary time series {g(X})}icz.

» Estimation of «y plays a key role in
time series analysis and Markov Chain
Monte Carlo (MCMC) simulation

> E.g., informative diagnostic plot for
convergence in MCMC simulation,
spectral density estimation, etc.
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Introduction: autocovariance sequence estimation

> For a given sample {g(X;)}M ;! of
size M, the empirical autocovarlance
sequence 7y = {rys(k) }rez defined
as

ryv(k) = {814 inR ' 9(XD)3(Xrsr)

is a natural estimator for
v = {7(k)}rez, where

1 M-1
9(Xe) = 9(Xy) — ZQ
t=0

k| <M -1
|kl > M
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Introduction: autocovariance sequence estimation

Goal for today’s talk: L2-consistent
estimation of autocovariance sequence
where

v(k) = Cov(g(Xo),9(Xy)), Vk

and Xy, X1, ... is a m-reversible Markov
chain, using regularization based on shape
constraints
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Asymptotics

Suppose X, X1,... are a Markov chain sequence with a stationary probability
measure 7 and transition kernel )

» Under mild conditions [e.g., Meyn and Tweedie [2009]], a central limit theorem
can be established for Y3; = ﬁ Zi\igl 9(X¢) such that

VM (Yar — Ex[g)) % N(0,07)

where 0% = 3772 (k) and (k) = Covz(9(Xo), 9(Xjx)))-
» The asymptotic variance o quantifies the uncertainty of the estimate of F,[g]
from an MCMC simulation.



Variance of empirical mean
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Figure: iid (left) and AR(1) (right) samples from the same N (0, (1 — 0.992)~1!) distribution



Asymptotic variance estimation

» Some natural estimators of o2 turn out to be inconsistent.
» For example, simply summing the empirical autocovariances

U2Emp Z M (k)

leads to an inconsistent estimator of o2.
» Several estimation methods proposed for estimating o with better statistical
properties (e.g., consistency, M'/3 convergence)
» Spectral variance estimators [Anderson, 1971, Damerdji, 1991]:
By
Gy =Y wa(k)rar(k)
k=—Bwm

for a properly chosen window function wys(k) such that wps(k) = 0 for k > Byy.

» Batch means and overlapping batch means estimators [Priestley, 1981, Flegal and
Jones, 2010, Chakraborty et al., 2022]

R M B|
b=0




Initial sequence estimators

» Geyer [1992] introduces “initial sequence estimators” for estimating the
asymptotic variance.

» The initial sequence estimators exploit positivity, monotonicity, and convexity
constraints on certain summed autocovariances of reversible Markov chains. In
particular, let

L(k) :==~v(2k)+~v(2k+1) k=0,1,2,...

» TI'(k) are positive (I'(k) > 0), monotone (I'(k) > I'(k + 1)), and convex
(T(k) + D(k+2) > 2T'(k + 1)) [Geyer, 1992]

» The idea of Geyer [1992] is to estimate summed autocovariance sequences I'(k)
by imposing these shape constraints.



Estimation with shape constraints

The work of Geyer [1992] can be considered as an example of shape-constrained

inference. Estimation with various shape constraints can be of interest:

» Monotonicity
» Isotonic regression [e.g.,Barlow et al. [1972]]:
for finite y € R™, yr = fr + €k, fx > fr1 for
k=1,...,n.

fiso = argmin Hy_fH2
fifk > foy1,k=1,....,d—1
» Single index model with monotonicity constraint
[Kakade et al., 2011, Ganti et al., 2015, Dai et al.,
2022]: yx = f(x} B) + €k, f: R — R is monotone

— true
— fitted




Estimation with shape constraints

» Monotonicity (cont'd)
» Estimation of a discrete monotone pmf [Jankowski and Wellner, 2009]

ﬁM(k’-i- 1) > ﬁ]\/[(k‘) >0, forn,k e N

» Estimation of a discrete completely monotone pmf [Balabdaoui and
de Fournas-Labrosse, 2020]

(=D)"A"p(k) >0, forn e N

where A% (k) = p(k), A"p(k) = A" p(k +1) — A" 1p(k), forn =1,2,3,...,
keN

» Convexity, Log-concavity, etc. [e.g., Dimbgen and Rufibach [2011], Balabdaoui
and Durot [2015], Kuchibhotla et al. [2017]]



Connection with moment problems

Moment problem: given a sequence m € RY, is there any measure y such that
m(k) = Ex~,[X*], forall k=0,1,2,...7

» There is a definite answer for the moment problem.
» Moreover, turns out, some “shape constraints” of a sequence m are closely related
to the properties of a representing measure p for m
Theorem (Hausdorff moment theorem [Hausdorff, 1921])

There exists a representing measure yi. supported on [0, 1] for m if and only if m € RN
is a completely monotone sequence. Additionally, if m is a completely monotone
sequence, the representing measure . for m is unique.

In short, [0, 1]-moment sequence <= completely monotone



Connection with moment problems

» It is a well known result that the true autocovariance sequence ~ for a reversible
Markov chain admits the following representation [Rudin, 1973]:

2 (k) = / o F (da) (1)

for a positive measure F' supported on [—1,1]

» Moreover, if a chain has a positive spectral gap, then ' is supported on
[-1 46,1 — 6] for some § > 0 (true for e.g., an IID sample or a reversible chain
with geometric ergodicity [Roberts and Rosenthal, 1997]).



Our approach

Let .#(9) denote the set of [—1 + J,1 — §] moment sequences
Our estimator (Moment LSE): for an input sequence 7/,

s(ry) = arg min lrar — mH2
mEMos (8) 2 (Z)

» projection onto £ moment sequence set



Computation

Objective: minimize L(u;ryr) over p, where

Llpsrar) = 3 (rar (k) = [ al¥l(ae)? 3)

kEZ

subject to u a positive measure with Supp(p) C [—1 46,1 — 4.

» For any input sequence rys such that |[{k;ry (k) # 0} < oo, the representing
measure for Il5(rys) is discrete, and its support contains at most finite number of

points [Berg and Song, 2023].
» A support reduction algorithm [Groeneboom et al., 2008] can be used for
optimizing (3).



Computation
» For r € l5(Z), define II(r; ©) as the projection of r onto set of ©-moment
sequences (moment sequence for a measure supported on ©)
» approximate II(r; ©) by II(r; C) where C' = {ay,...,as} C©
» (' is a finely spaced “grid”
P turns projection problem into optimization over measures

S
K= Z W;dq,
=1

where w; are nonnegative
» computing II(r; C) is a quadratic programming problem similar to non-negative
least squares:

> (rar(k) = m(k))? =ry Trar — 22" w + w Bw
keZ



Moment LSE in practice
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Figure: For an AR(1) chain with (a) p = 0.9 and (b) p = —0.9, a comparison of true,
empirical, and moment LS estimated autocovariances from a single simulation with M = 8000.



Assumptions

Consider a Markov chain {X;} on (X, X) with a transition kernel @ : X x X — [0, 1]
and the stationary probability measure 7. Let g be a function such that
fg m(dz) < 0o. Let v denote the autocovariance sequence of g(X3), i.e

(k) = COVw( (X0), 9(Xx))-

Assumptions:
1. (Assumptions on the chain) The kernel Q is 1-irreducible, aperiodic, m-reversible,
and geometrically ergodic.
2. (Assumptions on an input sequence /) rs is an even function with a peak at 0
with a finite support, and it (k) sl ~(k) almost surely for each k € Z.



Statistical guarantee

Theorem ([Berg and Song, 2023])

Consider a Markov chain X¢, X1,... and an input sequence ry; satisfying the
aforementioned conditions. Let I’ denote the representing measure for ~y. Suppose
d > 0 is chosen so that 0 < 6 < A(F). Then

1. (¢5-consistency of the Moment LSE ) ||y — Is(rar)||? e 0, P-as.
—00
2. (vague convergence of fis nr) Pr(fine — Fy vaguely, as M — oo) = 1, where [iy
and F' are the representing measures for Ils(ryr) and v, and
3. (a.s. convergence of 62) a%(Ils(rpr)) — o2(y) Py-a.s.

for each initial condition z € X, where we define o*(m) = 3", ., m(k) for a sequence
m on Z.



Empirical Studies

Metropolis-Hastings example:

Squared L2 difference Asymptotic variance error
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Empirical Studies

AR(1) example with p = 0.9:

Squared L2 difference Asymptotic variance error
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Weighted

> currently: covariance fitting objective [|rm, — m||* = Y, o (ras (k) — m(k))?
» what about a weighted squared error loss function?
> Y =X0+k¢, Var(e) =%
> Bors = (X' X)7'XTY
Bars = (X2 1X)"1XTe-1y
» Covariances of the empirical autocovariances (k) are simpler on the Fourier
transform scale:

M-1
dar(w) = Z ra (k) exp(—ikw) Periodogram (sample)
k=—(M—1)
p(w) = ~v(k) exp(—ikw) Spectral density (population)

keZ



Periodogram asymptotics
» Periodogram at Fourier frequencies:

drr(wn) X dw)Bxp(l) k=0, [M/2].

wi =2rkw/M, k=0,....M — 1
[e.g., Brockwell and Davis, 1991, Kokoszka and Mikosch, 2000]
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Figure: Autocovariances and spectral densities from an AR(1) process



Weighted loss function

Objective function:
> unweighted covariance fitting objective >, (rar (k) — m(k))?
> by Parseval equality, [|ras — m|? = (27) " 7 _(dar(w) — 1i2(w))? dw, where

> J)M() is the sample spectral density
» 7i(-) is the fitted spectral density (discrete time Fourier transform of m)

P> suggests a weighted loss

. . 2
I =l = 2~ [ {W(“’) ")”(‘”)} o

- &M (W

where ¢~>M(w) is a good estimate of true spectral density



Empirical performance
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Figure: For an AR(1) and Metropolis-Hasting chain, a comparison of mean squared error for
estimating the asymptotic variance o2, for M € {2500, 5000, ..., 40000}



Shape constraints for spatial covariance functions
How about “shape constraints” (or mixture representations) for covariance functions
for a random field on R9?
» It is well known that the function v : [0,00) — R leads to a valid covariance
function of the form C (z;,x;) = v (|#; — z;||) for z € R? in each dimension
d > 1, if and only if the function ~ admits a mixture representation of the form

= exp (—r?s? r
A(s) = /[Om) p (—125%) F(dr)

[see, e.g., Gneiting 1999]
» exploited in Choi et al. [2013] and Wang and Ghosh [2023]
» Implies y(1/1) is completely monotone

» A parametric example: C (x,y) =7 (|]z — y||) is a function in Matern Kernel class
[Stein, 1999]. Indeed, there exists a parametric f(7; p, ) such that

() = kar(ss py ) = / exp(—125%) f (s p, v)dr

[Tronarp et al., 2018]



Summary

» In this work, we propose a novel shape-constrained estimator of the
autocovariance sequence resulting from a reversible Markov chain.

» The proposed estimator (MomentLSE) exploits the representability of the
autocovariances of reversible Markov chains as the moments of a unique positive
measure supported on [—1,1].

» We provide a theoretical analysis of the MomentLSE, in particular, we proved
» a.s. /5 consistency of the momentLSE sequence,
» a.s. vague convergence of the representing measure of the momentLSE sequence,
and
» a.s. consistency of the asymptotic variance estimator based on the momentLSE
sequence for the true asymptotic variance o2.



Thank you!
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A few additional slides

AR(1) example (p = .9). Performance of Moment LSE oracle § (Emp), 6 chosen by
minimizing estimated loss functions from 10-fold cross-validation (CVmin) and 10
independent chains (TEmin).
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A few additional slides

AR(1) example (p = —.9). Performance of Moment LSE oracle § (Emp), 6 chosen by
minimizing estimated loss functions from 10-fold cross-validation (CVmin) and 10
independent chains (TEmin).

. A 1 i
Squared L2 difference ||y - r||2 Asymptotic variance error
2
25
2 )
o Estimat - Estimator
g stimator 8 50 > MLSE Emp
S ) > MLSE Emp 13 + MLSE CVmin
g + MLSE CVmin 2 MLSE TEmin
5 - MLSE TEmin = - init-convex
c
E’ -1 7.5
-2
-10.0
9 10 11 12 9 10 1" 12

log(M) log(M)



A few additional slides

Comparison of performance of OLBM estimators when batch size = MY/3, M'/2, and
optimal batch size.

MH

Asymptotic variance error ARM - Asymptotic variance error
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Choice of §

Our theoretical results cover the case of fixed tuning parameter § satisfying
0<d<A(F)

Empirically,
» /5 norm convergence seems to hold even with § =0

» But convergence of the estimated asymptotic variance is lost with 6 =0

In Berg and Song [2023] we suggest a rule for tuning d, based on a modification of a
batch-size estimation procedure from Politis [2003].
Under the assumption

ped02x, |oar(k) = p(k)| = Op(v/log M/M) (4)

on the sample autocorrelations, we show our rule leads to a conservative (not too
large) choice of 4.



Empirical Studies

1. Empirical illustration of the convergence properties of Moment LSEs

» Recall that the Moment LSE resulting from an input sequence r); is the
projection II5(ras) of ras onto the set Ao ([—1 46,1 — 6]) N la(Z).

» We proved the a.s. convergence of the autocovariance sequence (in L2 sense) and
a.s. convergence of the asymptotic variance estimate of the moment LS estimators
II5(rps) for any choice of 6 > 0 such that § > 0 and Supp(F') C [-1+ 6,1 — d].

» We empirically explore convergence of both the autocovariance sequence and the
asymptotic variance estimators at varying d levels, including cases in which the
support of F is not contained in [-1+J,1 — §].



A few extra slides: Empirical Studies

Empirical illustration of the convergence properties of Moment LSEs

Squared L2 difference ||y - || Asymptotic variance error
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Figure: Metropolis-Hastings example. The support of the representing measure for =y is
contained in [—.645,.645], i.e., the valid § range is 0 < § < .355.



A few extra slides: Empirical Studies

Empirical illustration of the convergence properties of Moment LSEs
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Figure: AR(1) example with p = .9. The representing measure has a single support point at .9.
The valid § range is 0 < ¢ < .1.



A few extra slides: Empirical Studies

Comparison with other state-of-the-art estimators
For the Bartlett windowed estimators, BM, OBM, and Moment LSEs, hyperparameters
are required. We used oracle hyperparameter settings:
» From Flegal and Jones [2010], for the BM and OLBM methods, the
mean-squared-error optimal batch sizes for estimating o(v) are

2 1/3 2 1/3
Bvm) _ (T°M _ 1/3 (oLBm) _ ( 8I"M _ 1/3
bM = <02(7)> =(C9M and bM = <302(7) =(CsM

respectively, where I' = —2 %7 | s7(s). Since the spectral variance estimator
based on the Bartlett window is asymptotically equivalent to OLBM [Damerd;i,
199].], we let C1 = C5s.

» For the choice of oracle §, we let 6 = 1 — sup |Supp(F)|
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