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Introduction: MCMC for Bayesian statistics

I probability measure π on (X,X ), eg Bayesian posterior distribution
I want µ =

∫
g(x)π(dx)

I construct Markov chain X0, X1, ... with stationary distribution π
I estimate µ by

µ̂M =M−1
M−1∑
t=0

g(Xt)
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Application: autocovariance sequence estimation

I The autocovariance sequence
γ = {γ(k)}k∈Z, defined as

γ(k) = Cov(g(X0), g(Xk)), k ∈ Z,

characterizes second order properties
of a stationary time series {g(Xt)}t∈Z.

I Estimation of γ plays a key role in
time series analysis and Markov Chain
Monte Carlo (MCMC) simulation
I E.g., informative diagnostic plot for

convergence in MCMC simulation,
spectral density estimation, etc.
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Introduction: autocovariance sequence estimation

I For a given sample {g(Xi)}M−1
i=0 of

size M , the empirical autocovariance
sequence rM = {rM (k)}k∈Z defined
as

rM (k) =

{
1
M

∑M−k−1
t=0 g̃(Xt)g̃(Xt+k) , |k| ≤M − 1

0 , |k| ≥M

is a natural estimator for
γ = {γ(k)}k∈Z, where

g̃(Xt) = g(Xt)−
1

M

M−1∑
t=0

g(Xt).
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Introduction: autocovariance sequence estimation

Goal for today’s talk: L2-consistent
estimation of autocovariance sequence γ
where

γ(k) = Cov(g(X0), g(Xk)), ∀k

and X0, X1, ... is a π-reversible Markov
chain, using regularization based on shape
constraints
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Asymptotics

Suppose X0, X1, . . . are a Markov chain sequence with a stationary probability
measure π and transition kernel Q

I Under mild conditions [e.g., Meyn and Tweedie [2009]], a central limit theorem
can be established for YM = 1

M

∑M−1
t=0 g(Xt) such that

√
M(YM − Eπ[g])

d→ N(0, σ2)

where σ2 =
∑∞

k=−∞ γ(k) and γ(k) = Covπ(g(X0), g(X|k|)).
I The asymptotic variance σ2 quantifies the uncertainty of the estimate of Eπ[g]

from an MCMC simulation.
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Variance of empirical mean

Figure: iid (left) and AR(1) (right) samples from the same N(0, (1− 0.992)−1) distribution
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Asymptotic variance estimation
I Some natural estimators of σ2 turn out to be inconsistent.

I For example, simply summing the empirical autocovariances

σ̂2
Emp =

∞∑
k=−∞

rM (k)

leads to an inconsistent estimator of σ2.
I Several estimation methods proposed for estimating σ2 with better statistical

properties (e.g., consistency, M1/3 convergence)
I Spectral variance estimators [Anderson, 1971, Damerdji, 1991]:

σ̂2
SV =

BM∑
k=−BM

wM (k)rM (k)

for a properly chosen window function wM (k) such that wM (k) = 0 for k > BM .
I Batch means and overlapping batch means estimators [Priestley, 1981, Flegal and

Jones, 2010, Chakraborty et al., 2022]

σ̂2
BM =

bM/Bc
B

B−1∑
b=0

(Ȳb − ȲM )2
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Initial sequence estimators

I Geyer [1992] introduces “initial sequence estimators” for estimating the
asymptotic variance.

I The initial sequence estimators exploit positivity, monotonicity, and convexity
constraints on certain summed autocovariances of reversible Markov chains. In
particular, let

Γ(k) := γ(2k) + γ(2k + 1) k = 0, 1, 2, ...

I Γ(k) are positive (Γ(k) ≥ 0), monotone (Γ(k) ≥ Γ(k + 1)), and convex
(Γ(k) + Γ(k + 2) ≥ 2Γ(k + 1)) [Geyer, 1992]

I The idea of Geyer [1992] is to estimate summed autocovariance sequences Γ(k)
by imposing these shape constraints.
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Estimation with shape constraints

The work of Geyer [1992] can be considered as an example of shape-constrained
inference. Estimation with various shape constraints can be of interest:
I Monotonicity

I Isotonic regression [e.g.,Barlow et al. [1972]]:
for finite y ∈ Rn, yk = fk + εk, fk ≥ fk+1 for
k = 1, . . . , n.

f̂iso = argmin
f ;fk≥fk+1,k=1,...,d−1

‖y − f‖2

I Single index model with monotonicity constraint
[Kakade et al., 2011, Ganti et al., 2015, Dai et al.,
2022]: yk = f(x>k β) + εk, f : R → R is monotone
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Estimation with shape constraints

I Monotonicity (cont’d)
I Estimation of a discrete monotone pmf [Jankowski and Wellner, 2009]

p̂M (k + 1) ≥ p̂M (k) ≥ 0, for n, k ∈ N

I Estimation of a discrete completely monotone pmf [Balabdaoui and
de Fournas-Labrosse, 2020]

(−1)n∆np̂(k) ≥ 0, for n ∈ N

where ∆0p(k) = p(k), ∆np(k) = ∆n−1p(k + 1)−∆n−1p(k), for n = 1, 2, 3, . . . ,
k ∈ N

I Convexity, Log-concavity, etc. [e.g., Dümbgen and Rufibach [2011], Balabdaoui
and Durot [2015], Kuchibhotla et al. [2017]]
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Connection with moment problems

Moment problem: given a sequence m ∈ RN, is there any measure µ such that
m(k) = EX∼µ[X

k], for all k = 0, 1, 2, . . . ?

I There is a definite answer for the moment problem.
I Moreover, turns out, some “shape constraints” of a sequence m are closely related

to the properties of a representing measure µ for m

Theorem (Hausdorff moment theorem [Hausdorff, 1921])
There exists a representing measure µ supported on [0, 1] for m if and only if m ∈ RN

is a completely monotone sequence. Additionally, if m is a completely monotone
sequence, the representing measure µ for m is unique.

In short, [0, 1]-moment sequence ⇐⇒ completely monotone
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Connection with moment problems

I It is a well known result that the true autocovariance sequence γ for a reversible
Markov chain admits the following representation [Rudin, 1973]:

γ(k) =

∫
x|k|F (dx) (1)

for a positive measure F supported on [−1, 1]

I Moreover, if a chain has a positive spectral gap, then F is supported on
[−1 + δ, 1− δ] for some δ > 0 (true for e.g., an IID sample or a reversible chain
with geometric ergodicity [Roberts and Rosenthal, 1997]).
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Our approach

Let M∞(δ) denote the set of [−1 + δ, 1− δ] moment sequences

Our estimator (Moment LSE): for an input sequence rM ,

Πδ(rM ) = argmin
m∈M∞(δ)∩`2(Z)

‖rM −m‖2 (2)

I projection onto `2 moment sequence set
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Computation

Objective: minimize L(µ; rM ) over µ, where

L(µ; rM ) =
∑
k∈Z

(rM (k)−
∫
x|k|µ(dx))2 (3)

subject to µ a positive measure with Supp(µ) ⊆ [−1 + δ, 1− δ].
I For any input sequence rM such that |{k; rM (k) 6= 0}| <∞, the representing

measure for Πδ(rM ) is discrete, and its support contains at most finite number of
points [Berg and Song, 2023].

I A support reduction algorithm [Groeneboom et al., 2008] can be used for
optimizing (3).
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Computation
I For r ∈ `2(Z), define Π(r; Θ) as the projection of r onto set of Θ-moment

sequences (moment sequence for a measure supported on Θ)
I approximate Π(r; Θ) by Π(r;C) where C = {α1, ..., αs} ⊂ Θ

I C is a finely spaced “grid”
I turns projection problem into optimization over measures

µ =

s∑
i=1

wiδαi

where wi are nonnegative
I computing Π(r;C) is a quadratic programming problem similar to non-negative

least squares:

∑
k∈Z

(rM (k)−m(k))2 = rM
>rM − 2a>w +w>Bw
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Moment LSE in practice

(a) ρ = 0.9 (b) ρ = −0.9

Figure: For an AR(1) chain with (a) ρ = 0.9 and (b) ρ = −0.9, a comparison of true,
empirical, and moment LS estimated autocovariances from a single simulation with M = 8000.
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Assumptions

Consider a Markov chain {Xt} on (X,X ) with a transition kernel Q : X ×X → [0, 1]
and the stationary probability measure π. Let g be a function such that∫
g2(x)π(dx) <∞. Let γ denote the autocovariance sequence of g(Xt), i.e.,

γ(k) = Covπ(g(X0), g(Xk)).

Assumptions:
1. (Assumptions on the chain) The kernel Q is ψ-irreducible, aperiodic, π-reversible,

and geometrically ergodic.
2. (Assumptions on an input sequence rM ) rM is an even function with a peak at 0

with a finite support, and rinit
M (k) →

M→∞
γ(k) almost surely for each k ∈ Z.
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Statistical guarantee

Theorem ([Berg and Song, 2023])
Consider a Markov chain X0, X1, . . . and an input sequence rM satisfying the
aforementioned conditions. Let F denote the representing measure for γ. Suppose
δ > 0 is chosen so that 0 < δ ≤ ∆(F ). Then

1. (`2-consistency of the Moment LSE ) ‖γ −Πδ(rM )‖2 →
M→∞

0, Px-a.s.

2. (vague convergence of µ̂δ,M ) Px(µ̂M → Fg vaguely, as M → ∞) = 1, where µ̂M
and F are the representing measures for Πδ(rM ) and γ, and

3. (a.s. convergence of σ̂2) σ2(Πδ(rM )) → σ2(γ) Px-a.s.
for each initial condition x ∈ X, where we define σ2(m) =

∑
k∈Zm(k) for a sequence

m on Z.
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Empirical Studies

Metropolis-Hastings example:
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Empirical Studies

AR(1) example with ρ = 0.9:
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Weighted

I currently: covariance fitting objective ‖rm −m‖2 =
∑

k∈Z(rM (k)−m(k))2

I what about a weighted squared error loss function?
I Y = Xβ + ε, V ar(ε) = Σ
I β̂OLS = (X>X)−1X>Y

β̂GLS = (X>Σ−1X)−1X>Σ−1Y

I Covariances of the empirical autocovariances rM (k) are simpler on the Fourier
transform scale:

φ̂M (ω) =

M−1∑
k=−(M−1)

rM (k) exp(−ikω) Periodogram (sample)

φ(ω) =
∑
k∈Z

γ(k) exp(−ikω) Spectral density (population)
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Periodogram asymptotics
I Periodogram at Fourier frequencies:

φ̂M (ωk)
ind
≈ φ(ωk)Exp(1) k = 0, ..., bM/2c.

ωk = 2πkω/M , k = 0, ...,M − 1
[e.g., Brockwell and Davis, 1991, Kokoszka and Mikosch, 2000]

Figure: Autocovariances and spectral densities from an AR(1) process
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Weighted loss function

Objective function:
I unweighted covariance fitting objective

∑
k∈Z(rM (k)−m(k))2

I by Parseval equality, ‖rM −m‖2 = (2π)−1
∫ π
−π(φ̂M (ω)− m̂(ω))2 dω, where

I φ̂M (·) is the sample spectral density
I m̂(·) is the fitted spectral density (discrete time Fourier transform of m)

I suggests a weighted loss

‖rM −m‖2 = (2π)−1

∫ π

−π

{
φ̂M (ω)− m̂(ω)

φ̃M (ω)

}2

dω

where φ̃M (ω) is a good estimate of true spectral density
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Empirical performance

(a) AR(1), ρ = 0.9 (b) Metropolis-Hastings

Figure: For an AR(1) and Metropolis-Hasting chain, a comparison of mean squared error for
estimating the asymptotic variance σ2, for M ∈ {2500, 5000, ..., 40000}
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Shape constraints for spatial covariance functions
How about “shape constraints” (or mixture representations) for covariance functions
for a random field on Rd?
I It is well known that the function γ : [0,∞) → R leads to a valid covariance

function of the form C (xi, xj) = γ (‖xi − xj‖) for x ∈ Rd in each dimension
d ≥ 1, if and only if the function γ admits a mixture representation of the form

γ(s) =

∫
[0,∞)

exp
(
−r2s2

)
F (dr)

[see, e.g., Gneiting 1999]
I exploited in Choi et al. [2013] and Wang and Ghosh [2023]
I Implies γ(

√
t) is completely monotone

I A parametric example: C (x, y) = γ (‖x− y‖) is a function in Matern Kernel class
[Stein, 1999]. Indeed, there exists a parametric f(r; ρ, ν) such that

γ(s) = kM (s; ρ, ν) =

∫
exp(−r2s2)f(r; ρ, ν)dr

[Tronarp et al., 2018]
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Summary

I In this work, we propose a novel shape-constrained estimator of the
autocovariance sequence resulting from a reversible Markov chain.

I The proposed estimator (MomentLSE) exploits the representability of the
autocovariances of reversible Markov chains as the moments of a unique positive
measure supported on [−1, 1].

I We provide a theoretical analysis of the MomentLSE, in particular, we proved
I a.s. `2 consistency of the momentLSE sequence,
I a.s. vague convergence of the representing measure of the momentLSE sequence,

and
I a.s. consistency of the asymptotic variance estimator based on the momentLSE

sequence for the true asymptotic variance σ2.
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Thank you!
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A few additional slides

AR(1) example (ρ = .9). Performance of Moment LSE oracle δ (Emp), δ chosen by
minimizing estimated loss functions from 10-fold cross-validation (CVmin) and 10
independent chains (TEmin).
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A few additional slides

AR(1) example (ρ = −.9). Performance of Moment LSE oracle δ (Emp), δ chosen by
minimizing estimated loss functions from 10-fold cross-validation (CVmin) and 10
independent chains (TEmin).
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A few additional slides

Comparison of performance of OLBM estimators when batch size = M1/3, M1/2, and
optimal batch size.
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Choice of δ

Our theoretical results cover the case of fixed tuning parameter δ satisfying
0 < δ ≤ ∆(F )

Empirically,
I `2 norm convergence seems to hold even with δ = 0

I But convergence of the estimated asymptotic variance is lost with δ = 0

In Berg and Song [2023] we suggest a rule for tuning δ, based on a modification of a
batch-size estimation procedure from Politis [2003].
Under the assumption

max
k=0,...,M−1

|ρ̂M (k)− ρ(k)| = OP (
√

logM/M) (4)

on the sample autocorrelations, we show our rule leads to a conservative (not too
large) choice of δ.
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Empirical Studies

1. Empirical illustration of the convergence properties of Moment LSEs

I Recall that the Moment LSE resulting from an input sequence rM is the
projection Πδ(rM ) of rM onto the set M∞([−1 + δ, 1− δ]) ∩ `2(Z).

I We proved the a.s. convergence of the autocovariance sequence (in L2 sense) and
a.s. convergence of the asymptotic variance estimate of the moment LS estimators
Πδ(rM ) for any choice of δ > 0 such that δ > 0 and Supp(F ) ⊆ [−1 + δ, 1− δ].

I We empirically explore convergence of both the autocovariance sequence and the
asymptotic variance estimators at varying δ levels, including cases in which the
support of F is not contained in [−1 + δ, 1− δ].
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A few extra slides: Empirical Studies
Empirical illustration of the convergence properties of Moment LSEs

Figure: Metropolis-Hastings example. The support of the representing measure for γ is
contained in [−.645, .645], i.e., the valid δ range is 0 < δ ≤ .355.
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A few extra slides: Empirical Studies
Empirical illustration of the convergence properties of Moment LSEs

Figure: AR(1) example with ρ = .9. The representing measure has a single support point at .9.
The valid δ range is 0 < δ ≤ .1.
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A few extra slides: Empirical Studies

Comparison with other state-of-the-art estimators
For the Bartlett windowed estimators, BM, OBM, and Moment LSEs, hyperparameters
are required. We used oracle hyperparameter settings:
I From Flegal and Jones [2010], for the BM and OLBM methods, the

mean-squared-error optimal batch sizes for estimating σ2(γ) are

b
(BM)
M =

(
Γ2M

σ2(γ)

)1/3

= C2M
1/3 and b

(OLBM)
M =

(
8Γ2M

3σ2(γ)

)1/3

= C3M
1/3

respectively, where Γ = −2
∑∞

s=1 sγ(s). Since the spectral variance estimator
based on the Bartlett window is asymptotically equivalent to OLBM [Damerdji,
1991], we let C1 = C3.

I For the choice of oracle δ, we let δ = 1− sup |Supp(F )|
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