Statistical and computation aspects of shape-constrained inference for autocovariance sequence estimation¹

Stephen Berg

Department of Statistics, Penn State University

Joint work with Hyebin Song (Stat, Penn State)

JSM 2024

Introduction: MCMC for Bayesian statistics

 \blacktriangleright probability measure π on (X, \mathscr{X}), e.g., Bayesian posterior distribution

• want
$$\mu = \int g(x) \, \pi(dx) = E_{\pi}[g]$$

- construct Markov chain $X_0, X_1, ...$ with stationary distribution π
- \blacktriangleright estimate μ by

$$\hat{\mu}_M = M^{-1} \sum_{t=0}^{M-1} g(X_t)$$

- quantify uncertainty in $\hat{\mu}_M$
- turns out, this problem is closely related to estimating the autocovariance function $\gamma: \mathbb{Z} \to \mathbb{R}$, defined as

$$\gamma(k) = \operatorname{Cov}_{\pi}(g(X_0), g(X_k)), \ k \in \mathbb{Z},$$

Asymptotic variance

Suppose X_0,X_1,\ldots are a Markov chain sequence with a stationary probability measure π and transition kernel Q

- The asymptotic variance $\sigma^2 = \sum_{k=-\infty}^{\infty} \gamma(k)$ aggregates the covariance from all lags. Given an estimate $\hat{\gamma}$ of γ , we may consider $\hat{\sigma}^2 = \sum_{k=-\infty}^{\infty} \hat{\gamma}(k)$.
- $\operatorname{Var}(\hat{\mu}_M) \approx \sigma^2/M$ for large M.
 - σ^2 is the CLT variance, or the limit of $M \text{Var}(\hat{\mu}_M)$ as $M \to \infty$ [e.g. Haggstrom and Rosenthal, 2007]

Sample autocovariances

For a given sample $X_0, X_1, \ldots, X_{M-1}$ of size M, the empirical autocovariance sequence $r_M : \mathbb{Z} \to \mathbb{R}$ defined as

$$r_M(k) = \begin{cases} \frac{1}{M} \sum_{t=0}^{M-k-1} \tilde{g}(X_t) \tilde{g}(X_{t+k}) &, |k| \le M-1\\ 0 &, |k| \ge M \end{cases}$$

is a natural estimator for γ , where $\tilde{g}(X_t) = g(X_t) - \frac{1}{M} \sum_{t=0}^{M-1} g(X_t)$.

• while $r_M(k) \rightarrow \gamma(k)$ for each k, r_M is rather terrible as an estimator for γ .

- For example, summing the empirical autocovariances $\hat{\sigma}_{Emp}^2 = \sum_{k=-\infty}^{\infty} r_M(k)$ leads to an inconsistent estimator of σ^2 .
- variance of $r_M(k)$ is "too large" compared to the signal $\gamma(k)$ for large k.

Spectral density

For a sequence $f: \mathbb{Z} \to \mathbb{R}$, define the discrete-time Fourier transform of $f: \hat{f}: [-\pi, \pi] \to \mathbb{R}$ such that

$$\hat{f}(\omega) = \sum_{k \in \mathbb{Z}} f(k) e^{-i\omega k}$$

- (spectral density) $\phi_{\gamma}(\omega) = \sum_{k \in \mathbb{Z}} \gamma(k) e^{-i\omega k}$
- (periodogram) $\hat{r}_M(\omega) = \sum_{k \in \mathbb{Z}} r_M(k) e^{-i\omega k}$, which is an estimate of ϕ_γ
- ▶ By Parseval's identity, $\sum_{k \in \mathbb{Z}} (\gamma(k) r_M(k))^2 = \frac{1}{2\pi} \int_{[-\pi,\pi]} (\phi_{\gamma}(\omega) \hat{r}_M(\omega))^2 d\omega$
- ℓ_2 square distance between r_M and $\gamma =$ integrated square error between $\tilde{\phi}_M$ and ϕ_γ • $\sigma^2 = \phi_\gamma(0)$

Red = Empirical autocovariance (periodogram)Blue = True autocovariance (spectral density)

w

୬ < ଙ 6/25

Estimation with shape constraints

Estimation with various shape constraints can be of interest:

Monotonicity

► Isotonic regression [e.g.,Barlow et al. [1972]]: for finite $y \in \mathbb{R}^n$, $y_k = f_k + \epsilon_k$, $f_k \ge f_{k+1}$ for k = 1, ..., n.

$$\hat{f}_{iso} = \operatorname*{arg\,min}_{f;f_k \ge f_{k+1},k=1,...,d-1} \|y - f\|^2$$

Estimation with shape constraints

- Monotonicity (cont'd)
 - Estimation of a discrete monotone pmf [Jankowski and Wellner, 2009]

$$\hat{p}_M(k+1) \ge \hat{p}_M(k) \ge 0, \text{ for } n, k \in \mathbb{N}$$

 Estimation of a discrete completely monotone pmf [Balabdaoui and de Fournas-Labrosse, 2020]

$$(-1)^n \Delta^n \hat{p}(k) \ge 0$$
, for $n \in \mathbb{N}$

where $\Delta^0 p(k) = p(k)$, $\Delta^n p(k) = \Delta^{n-1} p(k+1) - \Delta^{n-1} p(k)$, for $n = 1, 2, 3, ..., k \in \mathbb{N}$

- Convexity, Log-concavity, etc. [e.g., Dümbgen and Rufibach [2011], Balabdaoui and Durot [2015], Kuchibhotla et al. [2017]]
- ▶ initial sequence estimators of Geyer [1992]

Mixture representations

Commonly, shape constraints on a function are related to a mixture representation for the function

► Complete monotonicity of sequence *m* (positive, decreasing, convex, ...):

 $(-1)^n \Delta^n m(k) \ge 0, \ \forall n, k \in \mathbb{N} \qquad \Longleftrightarrow$

 $\exists \mu \text{ s.t. } m(k) = \int_{[0,1]} x^k \, \mu(dx), \, \forall k \in \mathbb{N}$ [Hausdorff moment theorem Hausdorff, 1921]

- ► convex sequence: mixture of "trifunctions" [Durot et al., 2013]
- k-monotone: mixture of Beta(1,k) densities [Balabdaoui and Wellner, 2005]
- ► (Spatial statistics) Mátern covariance: mixture of Gaussians

Shape constraints in autocovariance function γ

It is a well known result that the true autocovariance sequence γ for a reversible Markov chain admits the following representation [Rudin, 1973]:

$$\gamma(k) = \int x^{|k|} F(dx) \tag{1}$$

for a positive measure F supported on [-1,1]

• Moreover, if a chain has a positive spectral gap, then F is supported on $[-1 + \delta_{\gamma}, 1 - \delta_{\gamma}]$ for some $\delta_{\gamma} > 0$ (true for e.g., an IID sample or a reversible chain with geometric ergodicity [Roberts and Rosenthal, 1997]).

• γ is a $[-1 + \delta_{\gamma}, 1 - \delta_{\gamma}]$ moment sequence for a reversible and geometrically ergodic chain.

Our approach 1: L2 projection of empirical autocovariace sequence

Let $\mathscr{M}_{\infty}(\delta)$ denote the set of $[-1+\delta,1-\delta]$ moment sequences

(Un-weighted) Moment LSE [Berg and Song, 2023]:

$$\Pi(r_M;\delta) = \underset{m \in \mathscr{M}_{\infty}(\delta) \cap \ell_2(\mathbb{Z})}{\operatorname{arg\,min}} \sum_{k \in \mathbb{Z}} \{r_M(k) - m(k)\}^2$$
(2)

- projection onto the ℓ_2 moment sequence set
- here δ is a hyperparameter
- ▶ ignores unequal variances and non-zero covariances in $\{r_M(k)\}_{k \in \mathbb{Z}}$

Our approach 2: Weighted inner-product norm projection

• previously: covariance fitting objective $||r_M - m||_2^2 = \sum_{k=-\infty}^{\infty} (r_M(k) - m(k))^2$

what about a weighted squared error loss function?

• In regression,
$$Y = X\beta + \epsilon$$
, $Var(Y) = \Sigma$

$$\hat{\beta}_{OLS} = \operatorname{argmin}_{\beta} \sum_{k=1}^{n} (Y_k - x_k^{\top} \beta)^2 = (Y - X\beta)^{\top} (Y - X\beta) \hat{\beta}_{GLS} = \operatorname{argmin}_{\beta} (Y - X\beta)^{\top} \Sigma^{-1} (Y - X\beta)$$

• covariances of r_M not easy to work with

• $\operatorname{Cov}(r_M(j), r_M(k)) \neq 0$ for all j, k such that $|j|, |k| < M \rightarrow \text{covariance matrix not}$ sparse

Our approach 2: Weighted inner-product norm projection

► recall the Parseval's identity: $\sum_{k \in \mathbb{Z}} (r_M(k) - m(k))^2 = \frac{1}{2\pi} \int_{[-\pi,\pi]} (\hat{r}_M(\omega) - \hat{m}(\omega))^2 d\omega$

Periodogram at Fourier frequencies:

$$\hat{r}_M(\omega_k) \stackrel{ind}{\approx} \phi(\omega_k) \mathsf{Exp}(1) \qquad k = 0, ..., \lfloor M/2 \rfloor.$$

 $\omega_k=2\pi k/M,\,k=0,...,M-1[{\rm e.g.,}\;$ Brockwell and Davis, 1991, Kokoszka and Mikosch, 2000]

Our approach 2: Weighted inner-product norm projection

Given a good estimate $\phi_M(\omega)$ of true spectral density, define Weighted Moment LSE [Song and Berg, 2024+]

$$\Pi^{\phi_M}(r_M;\delta) = \underset{f \in \mathscr{M}_{\infty}(\delta) \cap \ell_2(\mathbb{Z},\mathbb{R})}{\operatorname{arg\,min}} \|r_M - f\|_{\phi_M}^2$$

where the weighted inner-product norm $\|\cdot\|_{\phi_M}$ is defined as

$$\|r_M - f\|_{\phi_M}^2 = (2\pi)^{-1} \int_{[-\pi,\pi]} \frac{\{\hat{r}_M(\omega) - \hat{f}(\omega)\}^2}{\phi_M(\omega)^2} d\omega$$

and \hat{r}_M and \hat{f} are Fourier transform of r_M and f.

another interpretation of the objective: estimate spectral density using shape-constraints on Fourier coefficients

Moment LSE in practice

Figure: For an AR(1) chain with (a) $\rho = 0.9$ and (b) $\rho = -0.9$, a comparison of true, empirical, and moment LS estimated autocovariances from a single simulation with M = 8000.

Estimator

$$\Pi^{\phi_M}(r_M;\delta) = \underset{f \in \mathscr{M}_{\infty}(\delta) \cap \ell_2(\mathbb{Z},\mathbb{R})}{\arg\min} \|r_M - f\|_{\phi_M}^2$$

Objective: minimize $\|r_M - f\|_{\phi_M}^2$ over valid autocovariances f

ie sequences satisfying

$$f(k) = \int_{[-1+\delta, 1-\delta]} \alpha^{|k|} \mu(d\alpha), \quad \forall k \in \mathbb{Z}$$

for a positive measure μ with $\text{Supp}(\mu) \subseteq [-1 + \delta, 1 - \delta]$.

▶ $0 < \delta \leq 1$ is a tuning parameter (estimated from data)

Finite, discrete support of estimated mixing measure

Proposition (ref Song and Berg [2024+])

- Let $C = [-1 + \delta, 1 \delta]$
- Suppose r(k) = r(-k), $\forall k$, and r(k) = 0 for $|k| > M_0 \ge 0$
- μ^{ϕ}_{C} denote the representing measure for $\Pi^{\phi}(r;C)$

Then $|\operatorname{Supp}(\mu_C^{\phi})| \leq \frac{n}{2} + 1$, where n is the smallest even number s.t. $n > M_0$.

- The mixing measure μ_C^{ϕ} for $\Pi^{\phi}(r; C)$ is finite and discrete, with at most $\approx M/2$ support points, where M is the MCMC sample size
- proof uses techniques from total positivity [e.g. Karlin, 1968] to bound number of support points
- in practice much smaller than M/2

Computation

► The objective is:

$$\|r_M - f\|_{\phi_M}^2 = \text{const} + \frac{1}{2\pi} \left\{ \int_{[-\pi,\pi]} -2\frac{\hat{r}_M(\omega)\hat{f}(\omega)}{\phi_M(\omega)^2} d\omega + \int_{[-\pi,\pi]} \frac{\hat{f}(\omega)^2}{\phi_M(\omega)^2} d\omega \right\}$$

• approximate
$$\Pi^{\phi_M}(r_M; \delta)$$
 with $\Pi^{\phi_M}(r_M; C)$ where $C = \{\beta_1, \dots, \beta_s\} \subset [-1 + \delta, 1 - \delta]$

 \blacktriangleright optimize over f with representing measures μ of form

$$\mu = \sum_{i=1}^{s} c_i \delta_{\beta_i}$$

Computation

For f with representing measure $\mu = \sum_{i=1}^s c_i \delta_{\beta_i}$

$$||r_m - f||^2_{\phi_M} = \text{const} - 2\sum_{i=1}^s c_i a_i + \sum_{i=1}^s \sum_{j=1}^s c_i c_j B_{ij}$$

where

$$B_{ij} = \langle x_{\beta_i}, x_{\beta_j} \rangle_{\phi_M} = \frac{1}{2\pi} \int_{[-\pi,\pi]} \frac{K(\beta_i, \omega) K(\beta_j, \omega)}{\phi_M(\omega)^2} d\omega$$
$$a_i = \langle x_{\beta_i}, r_M \rangle_{\phi_M} = \frac{1}{2\pi} \int_{[-\pi,\pi]} \frac{\hat{r}_M(\omega) K(\beta_i, \omega)}{\phi_M(\omega)^2} d\omega$$
$$K(\beta, \omega) = \frac{1 - \beta^2}{1 - 2\beta \cos(\omega) + \beta^2} \quad \text{(Poisson kernel)}$$

▶ B_{ij}, a_i are computable from data. This is a quadratic programming problem with non-negativity constraints on c_i .

Plug-in spectral density and asymptotic variance estimators

For a weighted momentLS estimator $\Pi^{\phi_M}(r_M; \delta)$, we consider

$$\begin{split} \phi^W_{\delta M}(\omega) &= \sum_{k \in \mathbb{Z}} \Pi^{\phi_M}(r_M; \delta)(k) e^{-i\omega k} & \text{(spectral density)} \\ \sigma^2_{\delta M, W} &= \sum_{k \in \mathbb{Z}} \Pi^{\phi_M}(r_M; \delta)(k) & \text{(asymptotic variance)} \end{split}$$

Statistical guarantee

Theorem ([Song and Berg, 2024+])

Consider a Harris ergodic, π -reversible, and geometrically ergodic Markov chain X_0, X_1, \ldots . Suppose a weight function ϕ_M is a twice continuously differentiable, positive function with bounded derivatives and does not vanish asymptotically. Let μ_{γ} denote the representing measure for γ . Suppose $\delta > 0$ is chosen so that $\operatorname{Supp}(\mu_{\gamma}) \subseteq [-1 + \delta, 1 - \delta]$. Then

- 1. (ℓ_1 -consistency) $\|\gamma \Pi^{\phi_M}(r_M; \delta)\|_1 \rightarrow 0$, P_x -a.s.
- 2. (spectral density) $\sup_{\omega \in [-\pi,\pi]} |\phi_{\delta M}^W(\omega) \phi_{\gamma}(\omega)| \to 0 \ P_x$ -a.s.
- 3. (asymptotic variance) $\sigma^2_{\delta M,W} \rightarrow \sigma^2(\gamma) \ P_x$ -a.s.

for each initial condition $x \in X$, where we define $\sigma^2(\gamma) = \sum_{k \in \mathbb{Z}} \gamma(k)$

 \blacktriangleright spectral density estimate $\phi_{\delta M}$ from the unweighted momentLS satisfies the regularity conditions

Empirical performance (asymptotic variance) Bayesian LASSO example [Rajaratnam et al., 2019]

Table: Estimated average mean squared error (s.e.) for the asymptotic variance estimators

	Bartlett	OBM	Init-con	IO-kernel	mLS_uw	mLS_w
β_0	333.45 (14.90)	343.99 (15.19)	162.57 (10.41)	164.04 (9.82)	163.10 (10.78)	153.18 (10.37)
β_1	291.61 (13.49)	300.97 (13.75)	166.04 (11.06)	160.04 (9.99)	164.35 (11.04)	148.67 (10.02)
β_2	368.42 (18.31)	383.17 (18.83)	227.44 (15.42)	230.95 (14.68)	229.72 (16.54)	214.63 (15.28)
β_3	98.26 (4.89)	101.43 (5.01)	55.91 (3.46)	58.10 (3.32)	52.96 (3.27)	49.24 (3.14)
β_4	63.69 (3.57)	65.62 (3.64)	41.21 (2.66)	37.00 (2.32)	38.75 (2.59)	35.53 (2.39)
β_5	19.65 (1.00)	20.10 (1.01)	11.89 (0.84)	12.27 (0.81)	12.06 (0.89)	11.62 (0.84)
β_6	141.89 (6.94)	147.49 (7.17)	87.85 (5.50)	82.63 (4.68)	86.93 (5.54)	81.21 (5.27)
β_7	0.54 (0.03)	0.55 (0.03)	0.71 (0.05)	0.53 (0.03)	0.49 (0.03)	0.45 (0.03)
σ^2	351.56 (18.28)	357.09 (18.47)	474.50 (32.61)	490.00 (17.44)	337.27 (23.94)	311.73 (21.89)

(a) Asymptotic variance mean squared error¹

 1 values for $\beta_0\text{-}\beta_7$ are scaled by 10^4, and σ^2 is scaled by 10^2

Empirical performance (spectral density)

Integrated squared error
$$=(2\pi)^{-1}\int_{[-\pi,\pi]} \{\hat{\phi}(\omega)-\phi(\omega)\}^2 d\omega$$

 (a) spectral density mean integrated squared error^2

	Bartlett	IO-kernel	mLS_uw	mLS_w
β_0	177.58 (6.11)	101.31 (3.95)	80.85 (3.64)	74.76 (3.45)
β_1	153.17 (5.42)	92.70 (3.70)	75.28 (3.49)	68.34 (3.29)
β_2	198.89 (6.98)	128.41 (5.34)	103.72 (5.01)	94.98 (4.75)
β_3	76.46 (2.53)	50.57 (1.85)	37.32 (1.66)	34.89 (1.63)
β_4	61.09(1.97)	37.88 (1.46)	29.41 (1.34)	27.04 (1.27)
β_5	12.52 (0.50)	9.07 (0.40)	7.37 (0.38)	7.10 (0.37)
β_6	73.69 (2.69)	48.30 (1.85)	40.49 (1.81)	37.58 (1.77)
β_7	2.17 (0.06)	2.17 (0.04)	1.31 (0.05)	1.27 (0.05)
σ^2	113.55 (3.49)	168.96 (2.39)	84.01 (2.99)	82.44 (2.91)

 2 values for $\beta_0\text{-}\beta_7$ are scaled by 10^5, and σ^2 is scaled by 10^2

Summary

- ► We propose novel shape-constrained estimators for the autocovariance sequence and weighing framework resulting from a reversible Markov chain.
 - ► exploits the representability of the autocovariances of reversible Markov chains as the moments of a unique positive measure supported on [-1, 1].
 - ► leverages asymptotic independence in the Fourier transform of the periodogram
- We provide a theoretical analysis of the proposed estimators, in particular, we proved
 - a.s. ℓ_2 consistency of the momentLSE sequence,
 - ► a.s. consistency of the asymptotic variance estimator based on the momentLSE sequence for the true asymptotic variance σ^2 .
- We show our asymptotic variance estimators empirically outperform other state-of-the art estimators.

This talk is based on the following two papers:

- Berg S and Song H, Efficient shape-constrained inference for the autocovariance sequence from a reversible Markov chain, Annals of Statistics, 2023
- Song H and Berg S, Weighted shape-constrained estimation for autocovariance sequence from a reversible Markov chain, 2024+, on ArXiv soon

Thank you!

References I

Fadoua Balabdaoui and Gabriella de Fournas-Labrosse. Least squares estimation of a completely monotone pmf: From analysis to statistics. *J. Stat. Plan. Inference*, 204: 55–71, January 2020.

- Fadoua Balabdaoui and Cécile Durot. Marshall lemma in discrete convex estimation. *Stat. Probab. Lett.*, 99:143–148, April 2015.
- Fadoua Balabdaoui and Jon A Wellner. Estimation of a k-monotone density, part 1: characterizations consistency, and minimax lower bounds. *arXiv preprint math/0509080*, 2005.
- Richard E Barlow, D J Bartholomew, J M Bremner, and H D Brunk. *Statistical inference under order restrictions;: The theory and application of isotonic regression (Wiley series in probability and mathematical statistics, no. 8)*. Wiley, January 1972.
- Stephen Berg and Hyebin Song. Efficient shape-constrained inference for the autocovariance sequence from a reversible markov chain. *The Annals of Statistics*, 51(6):2440–2470, 2023.

References II

- Peter J Brockwell and Richard A Davis. *Time series: theory and methods*. Springer science & business media, 1991.
- Halim Damerdji. Strong consistency and other properties of the spectral variance estimator. *Manage. Sci.*, 37(11):1424–1440, November 1991.
- Lutz Dümbgen and Kaspar Rufibach. logcondens: Computations related to univariate Log-Concave density estimation. *J. Stat. Softw.*, 39:1–28, March 2011.
- Cécile Durot, Sylvie Huet, François Koladjo, and Stéphane Robin. Least-squares estimation of a convex discrete distribution. *Computational Statistics & Data Analysis*, 67:282–298, 2013.
- James M. Flegal and Galin L. Jones. Batch means and spectral variance estimators in Markov chain Monte Carlo. *The Annals of Statistics*, 38(2):1034 1070, 2010.

Charles J. Geyer. Practical markov chain monte carlo. *Statistical Science*, 7(4): 473–483, 1992. ISSN 08834237.

References III

- Olle Haggstrom and Jeffrey Rosenthal. On variance conditions for Markov chain CLTs. *Electronic Communications in Probability*, 12:454–464, 2007.
- Felix Hausdorff. Summationsmethoden und momentfolgen. I. *Math. Z.*, 9(1):74–109, March 1921.
- Hanna K Jankowski and Jon A Wellner. Estimation of a discrete monotone distribution. *Electron. J. Stat.*, 3:1567–1605, 2009.
- Samuel Karlin. Total positivity. Stanford University Press, 1968.
- Piotr Kokoszka and Thomas Mikosch. The periodogram at the fourier frequencies. *Stochastic processes and their applications*, 86(1):49–79, 2000.
- Arun K Kuchibhotla, Rohit K Patra, and Bodhisattva Sen. Semiparametric efficiency in convexity constrained single index model. August 2017.
- Dimitris N Politis. Adaptive bandwidth choice. *Journal of Nonparametric Statistics*, 15 (4-5):517–533, 2003.

References IV

- Bala Rajaratnam, Doug Sparks, Kshitij Khare, and Liyuan Zhang. Uncertainty quantification for modern high-dimensional regression via scalable bayesian methods. *Journal of Computational and Graphical Statistics*, 28(1):174–184, 2019.
- Gareth Roberts and Jeffrey Rosenthal. Geometric ergodicity and hybrid markov chains. *Eff. Clin. Pract.*, 2(none):13–25, January 1997.
- W Rudin. Functional analysis, 1973.
- Hyebin Song and Stephen Berg. Weighted shape-constrained estimation for the autocovariance sequence from a reversible markov chain. 2024+.

Choice of $\boldsymbol{\delta}$

Our theoretical results cover the case of fixed tuning parameter δ satisfying $0<\delta\leq \Delta(F)$

Empirically,

- $\blacktriangleright~\ell_2$ norm convergence seems to hold even with $\delta=0$
- \blacktriangleright But convergence of the estimated asymptotic variance is lost with $\delta=0$

In Berg and Song [2023] we suggest a rule for tuning δ , based on a modification of a batch-size estimation procedure from Politis [2003]. Under the assumption

$$\max_{k=0,\dots,M-1} |\hat{\rho}_M(k) - \rho(k)| = O_P(\sqrt{\log M/M})$$
(3)

on the sample autocorrelations, we show our rule leads to a conservative (not too large) choice of δ .

Empirical Studies

- 1. Empirical illustration of the convergence properties of Moment LSEs
 - ► Recall that the Moment LSE resulting from an input sequence r_M is the projection $\Pi_{\delta}(r_M)$ of r_M onto the set $\mathscr{M}_{\infty}([-1+\delta, 1-\delta]) \cap \ell_2(\mathbb{Z})$.
 - We proved the a.s. convergence of the autocovariance sequence (in L2 sense) and a.s. convergence of the asymptotic variance estimate of the moment LS estimators $\Pi_{\delta}(r_M)$ for any choice of $\delta > 0$ such that $\delta > 0$ and $\text{Supp}(F) \subseteq [-1 + \delta, 1 \delta]$.
 - We empirically explore convergence of both the autocovariance sequence and the asymptotic variance estimators at varying δ levels, including cases in which the support of F is not contained in [−1 + δ, 1 − δ].

A few extra slides: Empirical Studies

Empirical illustration of the convergence properties of Moment LSEs

Figure: Metropolis-Hastings example. The support of the representing measure for γ is contained in [-.645, .645], i.e., the valid δ range is $0 < \delta \leq .355$.

A few extra slides: Empirical Studies

Empirical illustration of the convergence properties of Moment LSEs

Figure: AR(1) example with $\rho = .9$. The representing measure has a single support point at .9. The valid δ range is $0 < \delta \le .1$.

A few extra slides: Empirical Studies

Comparison with other state-of-the-art estimators

For the Bartlett windowed estimators, BM, OBM, and Moment LSEs, hyperparameters are required. We used oracle hyperparameter settings:

From Flegal and Jones [2010], for the BM and OLBM methods, the mean-squared-error optimal batch sizes for estimating $\sigma^2(\gamma)$ are

$$b_M^{(\rm BM)} = \left(\frac{\Gamma^2 M}{\sigma^2(\gamma)}\right)^{1/3} = C_2 M^{1/3} \quad \text{and} \quad b_M^{(\rm OLBM)} = \left(\frac{8\Gamma^2 M}{3\sigma^2(\gamma)}\right)^{1/3} = C_3 M^{1/3}$$

respectively, where $\Gamma = -2\sum_{s=1}^{\infty} s\gamma(s)$. Since the spectral variance estimator based on the Bartlett window is asymptotically equivalent to OLBM [Damerdji, 1991], we let $C_1 = C_3$.

For the choice of oracle δ , we let $\delta = 1 - \sup |\operatorname{Supp}(F)|$