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Introduction: MCMC for Bayesian statistics

I probability measure π on (X,X ), e.g., Bayesian posterior distribution
I want µ =

∫
g(x)π(dx) = Eπ[g]

I construct Markov chain X0, X1, ... with stationary distribution π

I estimate µ by

µ̂M = M−1
M−1∑
t=0

g(Xt)

I quantify uncertainty in µ̂M

I turns out, this problem is closely related to estimating the autocovariance function
γ : Z → R, defined as

γ(k) = Covπ(g(X0), g(Xk)), k ∈ Z,
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Asymptotic variance

Suppose X0, X1, . . . are a Markov chain sequence with a stationary probability
measure π and transition kernel Q
I The asymptotic variance σ2 =

∑∞
k=−∞ γ(k) aggregates the covariance from all

lags. Given an estimate γ̂ of γ, we may consider σ̂2 =
∑∞

k=−∞ γ̂(k).
I Var(µ̂M ) ≈ σ2/M for large M .

I σ2 is the CLT variance, or the limit of MVar(µ̂M ) as M → ∞ [e.g. Haggstrom and
Rosenthal, 2007]
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Sample autocovariances

I For a given sample X0, X1, . . . , XM−1 of size M , the empirical autocovariance
sequence rM : Z → R defined as

rM (k) =

{
1
M

∑M−k−1
t=0 g̃(Xt)g̃(Xt+k) , |k| ≤ M − 1

0 , |k| ≥ M

is a natural estimator for γ, where g̃(Xt) = g(Xt)− 1
M

∑M−1
t=0 g(Xt).

I while rM (k) → γ(k) for each k, rM is rather terrible as an estimator for γ.
I For example, summing the empirical autocovariances σ̂2

Emp =
∑∞

k=−∞ rM (k) leads
to an inconsistent estimator of σ2.

I variance of rM (k) is “too large” compared to the signal γ(k) for large k.
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Spectral density

For a sequence f : Z → R, define the discrete-time Fourier transform of f :
f̂ : [−π, π] → R such that

f̂(ω) =
∑
k∈Z

f(k)e−iωk

I (spectral density) φγ(ω) =
∑

k∈Z γ(k)e
−iωk

I (periodogram) r̂M (ω) =
∑

k∈Z rM (k)e−iωk, which is an estimate of φγ

I By Parseval’s identity,
∑

k∈Z(γ(k)− rM (k))2 = 1
2π

∫
[−π,π](φγ(ω)− r̂M (ω))2dω

I `2 square distance between rM and γ = integrated square error between φ̃M and φγ

I σ2 = φγ(0)
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Red = Empirical autocovariance (periodogram)
Blue = True autocovariance (spectral density)

Figure: Caption
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Estimation with shape constraints

Estimation with various shape constraints can be of interest:

I Monotonicity
I Isotonic regression [e.g.,Barlow et al. [1972]]:

for finite y ∈ Rn, yk = fk + εk, fk ≥ fk+1 for
k = 1, . . . , n.

f̂iso = argmin
f ;fk≥fk+1,k=1,...,d−1

‖y − f‖2
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Estimation with shape constraints

I Monotonicity (cont’d)
I Estimation of a discrete monotone pmf [Jankowski and Wellner, 2009]

p̂M (k + 1) ≥ p̂M (k) ≥ 0, for n, k ∈ N

I Estimation of a discrete completely monotone pmf [Balabdaoui and
de Fournas-Labrosse, 2020]

(−1)n∆np̂(k) ≥ 0, for n ∈ N

where ∆0p(k) = p(k), ∆np(k) = ∆n−1p(k + 1)−∆n−1p(k), for n = 1, 2, 3, . . . ,
k ∈ N

I Convexity, Log-concavity, etc. [e.g., Dümbgen and Rufibach [2011], Balabdaoui
and Durot [2015], Kuchibhotla et al. [2017]]

I initial sequence estimators of Geyer [1992]
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Mixture representations

Commonly, shape constraints on a function are related to a mixture representation for
the function
I Complete monotonicity of sequence m (positive, decreasing, convex, ...):

(−1)n∆nm(k) ≥ 0, ∀n, k ∈ N ⇐⇒

∃µ s.t. m(k) =
∫
[0,1] x

k µ(dx), ∀k ∈ N
[Hausdorff moment theorem Hausdorff, 1921]

I convex sequence: mixture of “trifunctions” [Durot et al., 2013]
I k-monotone: mixture of Beta(1,k) densities [Balabdaoui and Wellner, 2005]
I (Spatial statistics) Mátern covariance: mixture of Gaussians
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Shape constraints in autocovariance function γ

I It is a well known result that the true autocovariance sequence γ for a reversible
Markov chain admits the following representation [Rudin, 1973]:

γ(k) =

∫
x|k|F (dx) (1)

for a positive measure F supported on [−1, 1]

I Moreover, if a chain has a positive spectral gap, then F is supported on
[−1 + δγ , 1− δγ ] for some δγ > 0 (true for e.g., an IID sample or a reversible
chain with geometric ergodicity [Roberts and Rosenthal, 1997]).

I γ is a [−1 + δγ , 1− δγ ] moment sequence for a reversible and geometrically
ergodic chain.
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Our approach 1: L2 projection of empirical autocovariace
sequence

Let M∞(δ) denote the set of [−1 + δ, 1− δ] moment sequences

(Un-weighted) Moment LSE [Berg and Song, 2023]:

Π(rM ; δ) = argmin
m∈M∞(δ)∩`2(Z)

∑
k∈Z

{rM (k)−m(k)}2 (2)

I projection onto the `2 moment sequence set
I here δ is a hyperparameter
I ignores unequal variances and non-zero covariances in {rM (k)}k∈Z
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Our approach 2: Weighted inner-product norm projection

I previously: covariance fitting objective ‖rM −m‖22 =
∑∞

k=−∞(rM (k)−m(k))2

I what about a weighted squared error loss function?
I In regression, Y = Xβ + ε, V ar(Y ) = Σ
I β̂OLS = argminβ

∑n
k=1(Yk − x>

k β)
2 = (Y −Xβ)>(Y −Xβ)

β̂GLS = argminβ(Y −Xβ)>Σ−1(Y −Xβ)

I covariances of rM not easy to work with
I Cov(rM (j), rM (k)) 6= 0 for all j, k such that |j|, |k| < M → covariance matrix not

sparse
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Our approach 2: Weighted inner-product norm projection

I recall the Parseval’s identity:∑
k∈Z(rM (k)−m(k))2 = 1

2π

∫
[−π,π](r̂M (ω)− m̂(ω))2dω

I Periodogram at Fourier frequencies:

r̂M (ωk)
ind
≈ φ(ωk)Exp(1) k = 0, ..., bM/2c.

ωk = 2πk/M , k = 0, ...,M − 1[e.g., Brockwell and Davis, 1991, Kokoszka and
Mikosch, 2000]
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Our approach 2: Weighted inner-product norm projection

Given a good estimate φM (ω) of true spectral density, define
Weighted Moment LSE [Song and Berg, 2024+]

ΠφM (rM ; δ) = argmin
f∈M∞(δ)∩`2(Z,R)

‖rM − f‖2φM

where the weighted inner-product norm ‖ · ‖φM
is defined as

‖rM − f‖2φM
= (2π)−1

∫
[−π,π]

{r̂M (ω)− f̂(ω)}2

φM (ω)2
dω

and r̂M and f̂ are Fourier transform of rM and f .
I another interpretation of the objective: estimate spectral density using

shape-constraints on Fourier coefficients



15/25

Moment LSE in practice

(a) ρ = 0.9 (b) ρ = −0.9

Figure: For an AR(1) chain with (a) ρ = 0.9 and (b) ρ = −0.9, a comparison of true,
empirical, and moment LS estimated autocovariances from a single simulation with M = 8000.
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Estimator

ΠφM (rM ; δ) = argmin
f∈M∞(δ)∩`2(Z,R)

‖rM − f‖2φM

Objective: minimize ‖rM − f‖2φM
over valid autocovariances f

I ie sequences satisfying

f(k) =

∫
[−1+δ,1−δ]

α|k| µ(dα), ∀k ∈ Z

for a positive measure µ with Supp(µ) ⊆ [−1 + δ, 1− δ].
I 0 < δ ≤ 1 is a tuning parameter (estimated from data)
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Finite, discrete support of estimated mixing measure

Proposition (ref Song and Berg [2024+])
I Let C = [−1 + δ, 1− δ]

I Suppose r(k) = r(−k), ∀k, and r(k) = 0 for |k| > M0 ≥ 0

I µφ
C denote the representing measure for Πφ(r;C)

Then |Supp(µφ
C)| ≤

n
2 + 1, where n is the smallest even number s.t. n > M0.

I The mixing measure µφ
C for Πφ(r;C) is finite and discrete, with at most ≈ M/2

support points, where M is the MCMC sample size
I proof uses techniques from total positivity [e.g. Karlin, 1968] to bound number of

support points
I in practice much smaller than M/2
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Computation

I The objective is:

‖rM − f‖2φM
= const +

1

2π

{∫
[−π,π]

−2
r̂M (ω)f̂(ω)

φM (ω)2
dω +

∫
[−π,π]

f̂(ω)2

φM (ω)2
dω

}

I approximate ΠφM (rM ; δ) with ΠφM (rM ;C) where
C = {β1, . . . , βs} ⊂ [−1 + δ, 1− δ]

I optimize over f with representing measures µ of form

µ =

s∑
i=1

ciδβi
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Computation
For f with representing measure µ =

∑s
i=1 ciδβi

‖rm − f‖2φM
= const− 2

s∑
i=1

ciai +

s∑
i=1

s∑
j=1

cicjBij

where
Bij = 〈xβi

, xβj
〉φM

=
1

2π

∫
[−π,π]

K(βi, ω)K(βj , ω)

φM (ω)2
dω

ai = 〈xβi
, rM 〉φM

=
1

2π

∫
[−π,π]

r̂M (ω)K(βi, ω)

φM (ω)2
dω

K(β, ω) =
1− β2

1− 2β cos(ω) + β2
(Poisson kernel)

I Bij , ai are computable from data. This is a quadratic programming problem with
non-negativity constraints on ci.
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Plug-in spectral density and asymptotic variance estimators

For a weighted momentLS estimator ΠφM (rM ; δ), we consider

φW
δM (ω) =

∑
k∈Z

ΠφM (rM ; δ)(k)e−iωk (spectral density)

σ2
δM,W =

∑
k∈Z

ΠφM (rM ; δ)(k) (asymptotic variance)
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Statistical guarantee

Theorem ([Song and Berg, 2024+])
Consider a Harris ergodic, π-reversible, and geometrically ergodic Markov chain
X0, X1, . . . . Suppose a weight function φM is a twice continuously differentiable,
positive function with bounded derivatives and does not vanish asymptotically.
Let µγ denote the representing measure for γ. Suppose δ > 0 is chosen so that
Supp(µγ) ⊆ [−1 + δ, 1− δ]. Then

1. (`1-consistency) ‖γ −ΠφM (rM ; δ)‖1 → 0, Px-a.s.
2. (spectral density) sup

ω∈[−π,π]
|φW

δM (ω)− φγ(ω)| → 0 Px-a.s.

3. (asymptotic variance) σ2
δM,W → σ2(γ) Px-a.s.

for each initial condition x ∈ X, where we define σ2(γ) =
∑

k∈Z γ(k)

I spectral density estimate φδM from the unweighted momentLS satisfies the
regularity conditions
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Empirical performance (asymptotic variance)
Bayesian LASSO example [Rajaratnam et al., 2019]

Table: Estimated average mean squared error (s.e.) for the asymptotic variance estimators

(a) Asymptotic variance mean squared error1

Bartlett OBM Init-con IO-kernel mLS_uw mLS_w
β0 333.45 (14.90) 343.99 (15.19) 162.57 (10.41) 164.04 (9.82) 163.10 (10.78) 153.18 (10.37)
β1 291.61 (13.49) 300.97 (13.75) 166.04 (11.06) 160.04 (9.99) 164.35 (11.04) 148.67 (10.02)
β2 368.42 (18.31) 383.17 (18.83) 227.44 (15.42) 230.95 (14.68) 229.72 (16.54) 214.63 (15.28)
β3 98.26 (4.89) 101.43 (5.01) 55.91 (3.46) 58.10 (3.32) 52.96 (3.27) 49.24 (3.14)
β4 63.69 (3.57) 65.62 (3.64) 41.21 (2.66) 37.00 (2.32) 38.75 (2.59) 35.53 (2.39)
β5 19.65 (1.00) 20.10 (1.01) 11.89 (0.84) 12.27 (0.81) 12.06 (0.89) 11.62 (0.84)
β6 141.89 (6.94) 147.49 (7.17) 87.85 (5.50) 82.63 (4.68) 86.93 (5.54) 81.21 (5.27)
β7 0.54 (0.03) 0.55 (0.03) 0.71 (0.05) 0.53 (0.03) 0.49 (0.03) 0.45 (0.03)
σ2 351.56 (18.28) 357.09 (18.47) 474.50 (32.61) 490.00 (17.44) 337.27 (23.94) 311.73 (21.89)

1 values for β0-β7 are scaled by 104, and σ2 is scaled by 102
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Empirical performance (spectral density)

Integrated squared error = (2π)−1

∫
[−π,π]

{φ̂(ω)− φ(ω)}2 dω

(a) spectral density mean integrated squared error2

Bartlett IO-kernel mLS_uw mLS_w
β0 177.58 (6.11) 101.31 (3.95) 80.85 (3.64) 74.76 (3.45)
β1 153.17 (5.42) 92.70 (3.70) 75.28 (3.49) 68.34 (3.29)
β2 198.89 (6.98) 128.41 (5.34) 103.72 (5.01) 94.98 (4.75)
β3 76.46 (2.53) 50.57 (1.85) 37.32 (1.66) 34.89 (1.63)
β4 61.09 (1.97) 37.88 (1.46) 29.41 (1.34) 27.04 (1.27)
β5 12.52 (0.50) 9.07 (0.40) 7.37 (0.38) 7.10 (0.37)
β6 73.69 (2.69) 48.30 (1.85) 40.49 (1.81) 37.58 (1.77)
β7 2.17 (0.06) 2.17 (0.04) 1.31 (0.05) 1.27 (0.05)
σ2 113.55 (3.49) 168.96 (2.39) 84.01 (2.99) 82.44 (2.91)

2 values for β0-β7 are scaled by 105, and σ2 is scaled by 102
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Summary

I We propose novel shape-constrained estimators for the autocovariance sequence
and weighing framework resulting from a reversible Markov chain.
I exploits the representability of the autocovariances of reversible Markov chains as the

moments of a unique positive measure supported on [−1, 1].
I leverages asymptotic independence in the Fourier transform of the periodogram

I We provide a theoretical analysis of the proposed estimators, in particular, we
proved
I a.s. `2 consistency of the momentLSE sequence,
I a.s. consistency of the asymptotic variance estimator based on the momentLSE

sequence for the true asymptotic variance σ2.
I We show our asymptotic variance estimators empirically outperform other

state-of-the art estimators.
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This talk is based on the following two papers:
I Berg S and Song H, Efficient shape-constrained inference for the autocovariance

sequence from a reversible Markov chain, Annals of Statistics, 2023
I Song H and Berg S, Weighted shape-constrained estimation for autocovariance

sequence from a reversible Markov chain, 2024+, on ArXiv soon
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Thank you!
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Choice of δ

Our theoretical results cover the case of fixed tuning parameter δ satisfying
0 < δ ≤ ∆(F )

Empirically,
I `2 norm convergence seems to hold even with δ = 0

I But convergence of the estimated asymptotic variance is lost with δ = 0

In Berg and Song [2023] we suggest a rule for tuning δ, based on a modification of a
batch-size estimation procedure from Politis [2003].
Under the assumption

max
k=0,...,M−1

|ρ̂M (k)− ρ(k)| = OP (
√

logM/M) (3)

on the sample autocorrelations, we show our rule leads to a conservative (not too
large) choice of δ.
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Empirical Studies

1. Empirical illustration of the convergence properties of Moment LSEs

I Recall that the Moment LSE resulting from an input sequence rM is the
projection Πδ(rM ) of rM onto the set M∞([−1 + δ, 1− δ]) ∩ `2(Z).

I We proved the a.s. convergence of the autocovariance sequence (in L2 sense) and
a.s. convergence of the asymptotic variance estimate of the moment LS estimators
Πδ(rM ) for any choice of δ > 0 such that δ > 0 and Supp(F ) ⊆ [−1 + δ, 1− δ].

I We empirically explore convergence of both the autocovariance sequence and the
asymptotic variance estimators at varying δ levels, including cases in which the
support of F is not contained in [−1 + δ, 1− δ].
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A few extra slides: Empirical Studies
Empirical illustration of the convergence properties of Moment LSEs

Figure: Metropolis-Hastings example. The support of the representing measure for γ is
contained in [−.645, .645], i.e., the valid δ range is 0 < δ ≤ .355.
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A few extra slides: Empirical Studies
Empirical illustration of the convergence properties of Moment LSEs

Figure: AR(1) example with ρ = .9. The representing measure has a single support point at .9.
The valid δ range is 0 < δ ≤ .1.
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A few extra slides: Empirical Studies

Comparison with other state-of-the-art estimators
For the Bartlett windowed estimators, BM, OBM, and Moment LSEs, hyperparameters
are required. We used oracle hyperparameter settings:
I From Flegal and Jones [2010], for the BM and OLBM methods, the

mean-squared-error optimal batch sizes for estimating σ2(γ) are

b
(BM)
M =

(
Γ2M

σ2(γ)

)1/3

= C2M
1/3 and b

(OLBM)
M =

(
8Γ2M

3σ2(γ)

)1/3

= C3M
1/3

respectively, where Γ = −2
∑∞

s=1 sγ(s). Since the spectral variance estimator
based on the Bartlett window is asymptotically equivalent to OLBM [Damerdji,
1991], we let C1 = C3.

I For the choice of oracle δ, we let δ = 1− sup |Supp(F )|
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